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Abstract QSPR ensemble modeling of the stability con-

stant log K of the complexes of Mg2?, Ca2?, Sr2? and Ba2?

with diverse 273 (Mg2?), 284 (Ca2?), 147 (Sr2?) and 198

(Ba2?) organic ligands in water for the M2? ? L = (M2?)L

equilibrium at 298 K and an ionic strength 0.1 M has been

performed. For each compound, predicted log K was cal-

culated as an arithmetic average over the outputs of indi-

vidual multiple linear regression models based on fragment

descriptors. The root mean squared errors in fivefold cross-

validation are 0.75 (Mg2?), 0.77 (Ca2?), 0.72 (Sr2?) and 0.87

(Ba2?). Additional external validation of the models has

been performed on the complexes of 11 ligands recently

reported in the literature. Several methodological develop-

ments related to (i) descriptors selection for an individual

model and (ii) discarding redundant models have been pro-

posed. Developed models have been integrated in the

COmplexation of METals (COMET) predictor available as

WEB application.

Keywords QSPR modeling and prediction of stability

constants � Design of metal binders � Selectivity �
Complexes of Mg2?, Ca2?, Sr2? and Ba2? with organic

ligands in water

Introduction

Thermodynamic stability of complexes of alkaline-earth

metal ions (M2?) with organic ligands is important for

selective separation of Ba2? (Ca2?) ion from Sr2? (Mg2?)

[1], for recovery radioactive 90Sr [1], and for quantitative

assessments of interactions of M2? with bio ligands in

living organisms [2, 3]. Theoretical assessment of stabili-

ties of the metal/ligand complexes [4] provides researchers

with a way to reduce the number of experiments, to find the

strategy of ‘‘optimization’’ of known ligands and to design

new selective metal binders [4, 5].

Up to now, a few QSPR linear modeling of alkaline-

earth metal ions complexation have been reported. Shi

et al. [6] reported the models built on 314 stability con-

stants of Ca2?, Na? and Zn2? complexes with crown

ethers, cryptands and spherands in different pure and mixed

solvents using as descriptors some force field energy

components, internal strain energy of ligands, surface

tension and dipole moments of solvent, charge and ionic

radii of metal cations. Different types of organic ligands

were involved in the modeling of calcium [7–9] and

magnesium [8, 10, 11] complexes in water: amino acids,

adenosine derivatives, heterocyclic compounds [8, 10, 11],

as well as the ligands containing carboxylate, phenol,

amine, ether, and alcohol functional groups [9]. Raevsky

et al. [7] used molecular fragments, topological indices and

some physicochemical descriptors for QSPR modeling of

complexation of 56 ligands with Ca2? in water. Toropov

et al. [8, 10, 11] developed the models based on topological

indices for the data sets containing 110 [11] and 150 [8]

compounds. Fragment descriptors [9] were used for QSPR

modeling of the complexation of Ca2? with 42 organic

ligands. Ensemble models for the stability constants of the

1:1 complexes of Sr2? with 130 organic ligands have been
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developed by Solov’ev et al. [12] using substructural

molecular fragments (SMF) as descriptors. The models

described above were either not validated at all or their

validation have been performed only on one selected test

set. The applicability domain of the models have never

been used. These, certainly, weaken the practical applica-

tion of the reported models for computer-aided design of

new metal binders.

In this paper, we report the QSPR ensemble modeling of

the stability constant log K of the 1:1 (M:L) complexes of

metal cations Mg2?, Ca2?, Sr2? and Ba2? with organic

ligands in aqueous solution using multiple linear regression

(MLR) approach and SMF descriptors. The diversity and

the size of the involved datasets significantly exceed those

used in references [6, 8, 9, 12]. Compared to previous

studies, three main achievements have been reached:

(i) External cross-validation procedure has been used to

assess the predictive performance of the models.

(ii) The applicability domain has been assessed for each

individual model.

(iii) The models are available for the end users via WEB

interface.

Ensemble modeling implies generation of several QSPR

models, selection of the most pertinent ones, followed by

their simultaneous application to a given test compound. In

this case, the predicted value is estimated as an arithmetic

average of those calculated by selected individual models

(IM). The performance of this ‘‘consensus’’ model (CM)

depends on that of each individual model, on one hand,

and on the composition of the subset of selected IM, on

the other hand. The first issue concerns the selection of the

most relevant molecular descriptors from the initial

descriptors pool whereas the second one investigates the

redundancy (collinearity) of different QSPR models. Here,

we describe some methodological developments related to

these two key aspects of QSPR ensemble modeling.

Method

Data preparation

Experimental stability constant values (log K) for the 1:1

(M:L) complexes of Mg2?, Ca2?, Sr2? and Ba2? cations

with organic ligands in water were critically selected from

IUPAC stability constants database (SC DB) [13] (version

5.33, Academic Software) at standard temperature 298 K

and an ionic strength I = 0.1 M. Some of the log K values

were adjusted to specified temperature and ionic strength

using the procedures included in SC DB.

2D structures of the ligands, names of the metal ions as

well as corresponding experimental log K values were

converted by the EdiSDF data manager [12, 14, 15] into

structure data files (SDF) used as an input in the MLR

module of the in silico design and data analysis (ISIDA)

package [16, 17]. If several values of the stability constant

log K were available for a given ligand, we followed the

recommendations of IUPAC [18] to select the most

appropriate one. In some cases the most recent data or the

data consistent with respect to different experimental

methods were chosen. 273 (Mg2?), 284 (Ca2?), 147 (Sr2?)

and 198 (Ba2?) organic ligands were involved in the QSPR

modeling. Distributions of the experimental values log K in

the data sets are given in Fig. 1. For the studied complexes,

the values log K vary in the range of 0.1–11.2 (Mg2?),

0.1–14.1 (Ca2?), 1.1–12.4 (Sr2?) and 0.2–11.8 (Ba2?).

The names of the ligands and the stability constant

values are given as supporting information in Tables SM1–

SM4. As a rule, the organic ligand bears several electron-

donor groups. The sets of the ligands include amino and

hydroxy derivatives of carboxylic acids; different amino-

acids and their oligomers, alkylated derivates of phosphoric

acid; alkyl- and aminophosphonic acids; acyclic polyden-

tate ligands with the terminal carboxy groups separated by

various cyclic or acyclic spacers; derivatives of diphos-

phonic acids; ternary amines with phosphono and carboxy

groups; mono- and dipodands of ternary amines; amino

derivatives of phenols; crown-ethers, thia-, and aza-crown-

ethers with neutral and acidic lariat groups, cryptands, etc.

(see Tables SM1–SM4).

Descriptors

SMF of the ISIDA package [14, 19] were used as

descriptors in the QSPR models. Each fragment represents

a subgraph of a molecular graph, whereas its occurrence

is a descriptor value. Molecules were represented with

implicit hydrogen atoms. Two subclasses of the SMF

descriptors were used: (i) shortest topological paths with

explicit representation of all atoms and bonds and (ii)

shortest topological paths with explicit representation of

only terminal atoms and bonds. The Floyd algorithm [20]

was used for finding the shortest paths in the molecular

graphs. Single, double, triple and aromatic bonds were

recognized, where bonds in cycles and in chains were

considered differently. For every subclass of the sequences,

the minimal (nmin C 2) and maximal (nmax B 15) numbers

of atoms are defined. Thus, IAB(nmin–nmax) and IAB(nmin–

nmax)t represent two subclasses of the SMF descriptors that

include all intermediate shortest paths with n atoms, for

which nmin B n B nmax. Varying the values of nmin and

nmax, 210 types of the sequences of two subclasses were

generated. Concatenated fragments always occurring in the

same combination in each compound of the training set

were considered as one extended fragment.
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Obtaining, selection and validation of the models

The ISIDA/MLR program [15–17] has been used for the

modeling. MLR establishes a linear relationship between

two or more independent variables (molecular descriptors)

and a response variable (property) Y = a0 ? RaiXi to

observed data, where every descriptor value Xi (in our case,

occurrence of fragment descriptor) is associated with a

property value, ai is descriptor contribution, and a0 is the

independent term. Here, the singular value decomposition

method [21] is used to search the adjustable coefficients ai

of input variables so as to minimize the squared difference

between the values calculated by the models and actual

observed values of the property in the training set.

The ISIDA/MLR program generates many MLR

models, each of them corresponds to different initial subset

of the SMF descriptors. The leave-one-out (LOO) cross–

validation correlation coefficient Q, corresponds to the

stability of models and is accepted as a criterion of model

selection: only the models for which Q2 [ Qlim
2 , where Qlim

2

is a user defined threshold, are selected. In this work,

Qlim
2 = 0.5 was used.

The traditional technique for model validation implies

the split of the initial data set into training and test sets. The

training set is used in model development whereas the test

set is used only for the model validation. In this work,

the fivefold external cross validation (5-CV) was used to

evaluate the predictive performance of models [5, 22]. In

this procedure, the entire dataset is split into five non-

overlapping pairs of training and test sets. Each training set

covers 4/5th of the initial dataset while the related test set

covers the remaining 1/5th. The models developed on the

i-th training set have to be applied to the corresponding

test set, thus, all the molecules of the initial data set are

predicted.

Coefficient of determination R2 and root mean squared

error RMSE were used to evaluate the model ability to

reproduce quantitatively the experimental data:
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Fig. 1 Distribution of experimental values of the stability constant log K for the 1:1 (M:L) complexes of organic ligands with Mg2?, Ca2?, Sr2?

and Ba2? in water at 298 K and ionic strength 0.1 M
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R2 ¼ 1� RðYexp � YpredÞ2=RðYexp � \Y [ expÞ2;

RMSE ¼ ðRðYexp � YpredÞ2=nÞ1=2
and

MAE ¼ R j Yexp � Ypred j =n;

where Ypred and Yexp are predicted and experimental values

(here, Y = log K).

Ensemble modeling implies generation of several QSPR

models, selection among them the most pertinent ones, fol-

lowed by their joint application to a given test compound.

Thus, for each compound from the test set, the program

computes the property as an arithmetic average of values

obtained with an ensemble of selected at the training stage

IM. IM leading to outlying values according to the ranked

series method [24] are excluded. The application of such

‘‘consensus’’ model (CM) compensates inaccuracies of the

individual model predictions [12, 17, 22, 23, 25, 26]. In order

to make a decision whether or not a QSPR model can be

applied to a given compound, the concept of applicability

domain (AD) of models is used. Generally, the AD of the

model is associated with the area of chemical space occupied

by the training set. Applying an individual model, the pro-

gram checks its AD measuring the similarity between the test

compound and the compounds from the training set. If given

compound is identified as being outside AD, the predicted

value for this compound by given model is excluded from

CM. In this work, two AD approaches were applied:

(i) bounding box which considers AD as a multidimensional

descriptor space confined by minimal and maximal values of

occurrences of SMF descriptors involved in individual

model [15], and (ii) fragment control [15] which discards the

query compounds containing fragments different from those

in the training set.

Variable selection algorithms in ISIDA/MLR

Combined forward and backward stepwise techniques have

been used to select the most pertinent variables from initial

pool of the SMF descriptors. Previous versions of the IS-

IDA/MLR program used either entire initial descriptors

pool [19, 23, 27] or a part of descriptors selected by

backward stepwise variable selection (BVS) algorithm

[23]. BVS eliminates the variables with low ti = ai/Dai

values, where Dai is a standard deviation for the coefficient

ai at the i-th variable in the model. First, the program

selects the variable with the minimal tmin \ t0, then it

builds a new model excluding this variable. This procedure

is repeated until t C t0 for all selected variables. Here t0 is

the tabulated value of Student’s criterion. By default, t0
equals 1.96. For non-collinear descriptors, the used SVD

method [21] allows one to calculate the values Dai, if the

initial number of descriptors (M) does not exceed the size

(N) of the training set.

In order to apply the BVS technique [5, 14, 22, 23, 28–

31] to large initial set of descriptors (M [[ N), a new

forward stepwise variable selection (FVS) algorithm has

been developed to pre-select the user-defined number of

the most relevant variables (Mp \ N). The FVS employs

the known equations for the correlation coefficients

between the response variable Y and one- two- and three

variables [32] in combination with the FSMLR algorithm

[33]. Accordingly, three sub-algorithms (FVS-1, FVS-2

and FVS-3) have been developed. At step p, the FVS

procedure defines a new response variable Y(p) = Y(p-1)-

Ycalc, where Ycalc = c0 ? ciXi (FVS-1), Ycalc = c0 ? ciXi ?

cjXj (FVS-2), Ycalc = c0 ? ciXi ? cjXj ? ckXk (FVS-2),

p = 1, 2, 3,… and Y(0) = Yexp. Thus, one (Xi), two (Xi, Xj)

or three variables (Xi, Xj and Xk) are selected to maximize

the correlation coefficients (Ry,i, Ry,ij or Ry,ijk correspond-

ingly) between the variable(s) and Y(p). This is repeated

until the number of selected variables Mp reaches a user-

defined value. It should be noted that the sub-algorithm

FVS-1 corresponds to fast stepwise multiple linear

regression [33]. Optionally, variables Xm with small cor-

relation coefficient with Y(p) (|Ry,m| \ Ry,m
0 ), those highly

correlated with other variables Xi (|Ri,m| [ Ri,m
0 ) or ‘‘rare’’

fragments (i.e., found in less than q molecules, here q \ 2)

and can be eliminated.

The efficiency of the FVS procedure was compared with

different implementations of Genetic Algorithm. They

were applied to the Selwood data set [34] comprising 31

compounds and to the QSAR modeling of different types

of anti-HIV activity for three families of compounds [31].

The results show similar predictive performance of com-

putationally expensive GA-based approaches and FVS

calculations.

The optimization of the FVS algorithm parameters was

carried out where the predictive performance of CMs was

evaluated as a function of the FVS sub-algorithm, the

number of preselected descriptors Mp and a collinearity of

descriptors using 5-CV procedure. The number of pres-

elected descriptors Mp = kN was systematically varied in

the range of k from 0.1 to 0.9, where N is the training set

size. The QSPR modeling was performed using the FVS-1,

FVS-2 and FVS-3 sub-algorithms on the data sets of

experimental stability constants log K for the (Ca2?)L and

(Sr2?)L complexes. For the sub-algorithms, optimal num-

ber of preselected descriptors Mp can be recommended to

kN, where k = 0.6 and N is the number of data points in the

training set (Figs. 2). In the range of k from 0.3 to 0.7, the

sub-algorithm FVS-2 is preferable because of the reason-

able performance of predictions as compared with FVS-1

(Fig. 2) and time of calculations as compared with FVS-3.

FVS-2 is in several times faster than FVS-3.

Collinearity of descriptors The presence of highly cor-

related variables can cause the instability of IM. However,
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this problem was never studied for the consensus model

involving ensemble of IMs. Here, we measured the con-

sensus model’s performance (RMSE in 5-CV) as a function

of the Pearson’ correlation coefficient Rij between two

descriptor vectors which determines descriptors’ collin-

earity. Thus, variables Xj correlated with already pres-

elected ones Xi were eliminated if |Rij| [ R0. The threshold

value R0 was systematically varied in the range from 0.40

to 0.99. Figure 3a shows that RMSE practically doesn’t

vary with Rij just showing that the descriptor collinearity

has very little impact on the predictive ability of CMs. One

may assume that negative influence of multicollinearity on

the predictive ability of each individual model is smoothen

in CM involving several IMs.

Collinearity of IM

The ISIDA/MLR program generates an ensemble of IM,

some of which can be redundant. The question arises how

does collinearity of IM impact on predictive ability of CM?

The Pearson’ correlation coefficient between residuals

vectors of two models Rrm has been used to measure the

IMs collinearity. For a given IM, the residual vector con-

tains N components (N is the training set size) in which its

i-th component is the difference between experimental and

predicted property values for i-th molecule. An individual

model r is excluded from CM if it correlates (|Rrm| [ R0)

with another already selected model m. The threshold R0

was systematically varied in the range from 0.40 to 0.99.

One can see (Fig. 3) that discarding highly correlated IM

reduces RMSE thus leading to the improvement of the

CM performance. Further removal of correlated models

decreases the accuracy of predictions. Thus, R0&0.8 looks
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as an optimal degree of the models’ collinearity, which is

used in the further calculations.

Results and discussion

For every metal, 4200 IM were initially built with the ISIDA/

MLR program. After discarding meaningless (Q2 \ 0.5) or

highly correlated models, the remaining models were used

for consensus calculations. Their number varies from one-

fold in 5-CV to another one: 571–628 (Mg2?), 236–278

(Ca2?), 655–712 (Sr2?) and 659–665 (Ba2?) IM. Obtained

consensus models demonstrate a reasonable predictive

ability in log K predictions on the ensemble of test sets in

5-CV: RMSE of predicted log K values varies from 0.72 to

0.89 log K units and squared determination coefficient R2

varies from 0.864 to 0.923 as a function of metal (Fig. 4). For

80 % of studied compounds, observed absolute prediction

error is less than one log K unit; this is comparable with the
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Table 1 Experimental and predicted stability constant values log K of the 1:1 (M:L) complexation for the external test set

No. Ligand Cation log K

Exp. Pred.a Nm
b

1
OH

P
O CH3

OH

O

Mg2? 1.73c 1.37 (0.25) 140

Ca2? 1.51c 1.31 (0.20) 77

Sr2? 1.26c 1.11 (0.51) 214

Ba2? 1.24c 1.02 (0.45) 184

2

N

N

N

N

OH
P

O

NH2

O

OH

Mg2? 1.74c 1.44 (0.33) 86

Ca2? 1.52c 1.08 (0.40) 48

Sr2? 1.27c 1.30 (0.60) 136

Ba2? 1.20c 1.09 (0.31) 85

3

N

N

CH3

NH2
Mg2? -0.02d 0.93 (0.52) 127

Ca2? -0.07d 1.09 (0.70) 98

Sr2? -0.11d 1.11 (0.77) 126

Ba2? -0.20d 0.77 (0.65) 154

4

N

N

CH3

CH3
Mg2? -0.04d 0.85 (0.44) 108

Ca2? -0.20d 0.42 (0.29) 44

Sr2? -0.28d 0.94 (0.79) 140

Ba2? -0.11d 0.51 (0.40) 111

5

NN
O O

OH OH

Mg2? 3.5e 2.6 (1.3) 285

Ca2? 7.3e 3.68 (0.62) 39

Sr2? 5.6e 2.80 (0.87) 116

Ba2? 5.4e 2.28 (0.52) 217

6

OH
P

OCH3

O O
OH

Mg2? 1.51f 2.17 (0.21) 119

Ca2? 1.55f 2.14 (0.19) 48

Sr2? 1.47f 1.82 (0.15) 89

Ba2? 1.53f 1.68 (0.20) 97

7

OH
P

CH

O O
OH

3

Mg2? 1.73f 2.03 (0.03) 38

Ca2? 1.55f 1.88 (0.18) 54

Sr2? 1.31f 1.45 (0.62) 159

Ba2? 1.23f 1.62 (0.53) 165

8

NN

N N

O

P

OH
P

OH

OH

OH

OH

O
O

OH O Ca2? 15.1g 12.8 (1.1) 64

9

N

N

N

OH

O

NN
OH

O

OH

O

Ca2? 8.18h 9.3 (1.6) 46
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variation in experimental log K values measured by different

methods for the same metal–ligand complex [35] (Fig. 5).

Several arsenic containing compounds (one for the Ca2? and

Sr2? sets and three for the Ba2? set) were found out of the

applicability domain of all IM and, therefore, they were

excluded from the test sets.

In spite of severe validation procedure, our models

outperform those reported in previous studies [7–11]. Thus,

failing to obtain reasonable models on the training data of

49 Ca2? ligands, Raevski et al. [7] split the training data

(49 compounds) into several small clusters on which some

‘‘local’’ models were developed. The validation of these

models was performed on the test set containing only seven

compounds which lead to poor correlation between the

predicted and experimental data (R2 = 0.4). In a number of

studies [8, 10, 11], the training and test sets contained

many common compounds, which could hardly be con-

sidered as valuable validation procedure. In a study by

Cabaniss [9], the standard deviation of prediction (0.93 in

log K units) was calculated for the small test set containing

15 compounds only.

The predictive ability of the developed models was

assessed on the external test set of 32 complexes of

Mg2?, Ca2?, Sr2? and Ba2? with 11 new organic ligands

(Table 1) taken from references [36–42] which were not

included in the initial modeling set. They contain the

derivatives of phosphonic acid, benzimidazole and 1,10-

phenanthroline, the aza-macrocycles with the lateral func-

tional groups as well as the acyclic multidentate ligands

with the carboxylic and phosphonic groups (Table 1). The

statistical parameters (R2 = 0.880 and RMSE = 1.2,

Table 1 and Fig. 6) demonstrate a reasonable agreement

between the experimental and predicted log K values; they

are similar to those obtained in 5-CV on the modeling set.

The obtained results allow one to assess the ligand

selectivity of metal Ma with respect to Mb measured by the

logarithm of a ratio of their stability constants (log(KMaL/

KMbL)) [43]. For several selective ligands for Mg2?, Ca2?

Table 1 continued

No. Ligand Cation log K

Exp. Pred.a Nm
b

10

N
N

N
OH

O

O

O

OH

P

OH

O

OH

O

OH

OH

Ca2? 10.7i 9.03 (0.35) 62

11

N
N

N
OH

O

O

O

OH

P
O

OH

O

OH

OH

Ca2? 9.38i 9.72 (0.93) 75

R2 0.880

RMSE 1.2

Experimental data are given at 298 K and ionic strength 0.1 M excepting: for the ligands 3 and 4 an ionic strength is 0.5 M, for the ligand 8 an

ionic strength is 1.0 M
a Predicted stability constant values log Kpred are computed using the MLR consensus model, standard deviations are given in parentheses
b For the given ligand, the number of IM in CM using AD
c Ref. [36]
d Ref. [37]
e Ref. [38]
f Ref. [39]
g Ref. [40]
h Ref. [41]
i Ref. [42, 44]
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Table 2 Predicted values of selectivity for several considered ligands

No. Ligand Selectivity, log(KMaL/KMbL)

Ma Mb Exp.a Pred.

1

POH

O
OH

N
N

CH3

P
OH

O

OH
CH3

Mg2? Ca2? 0.5 1.3

Mg2? Sr2? 1.5 1.2

Mg2? Ba2? 2.0 1.7

2

P
OH

O
OHP

OH

O
OH

N
N

CH3

CH3

Mg2? Ca2? 1.4 1.2

Mg2? Sr2? 2.4 1.8

Mg2? Ba2? 2.6 1.9

3

N
H

N
H

O

OH

O

OH

O

OH

O

OH

Mg2? Ca2? 1.2 1.1

Mg2? Sr2? 3.0 2.2

Mg2? Ba2? 3.7 2.9

4 OH

N
H

N
H

OH

O

O

OH

OH

O

O

OH

Mg2? Ca2? 0.7 0.9

Mg2? Sr2? 0.9 1.3

Mg2? Ba2? 1.7 1.9

5

OH

OH

OH

N
H

CH3

Mg2? Ca2? 0.6 2.0

Mg2? Sr2? 1.3 0.8

Mg2? Ba2? 2.0 1.6

6 OH

NN

N

O

O

OH
N

O

OH

O
OH

Ca2? Mg2? 8.2 2.5

Ca2? Sr2? 6.4 2.8

Ca2? Ba2? 7.8 4.2

7

NN

N N

OH

O

OH
O

OH

O

Ca2? Mg2? 3.6 3.3

Ca2? Sr2? 4.4 2.4

Ca2? Ba2? 6.0 4.0

8

OH

NN

O

OH

OOH

O

OH

O OH

Ca2? Mg2? 1.8 2.2

Ca2? Sr2? 1.5 2.8

Ca2? Ba2? 1.9 2.9

9

NN

N N

OH

O

OH
O

OH

O

OH

Ca2? Mg2? 4.4 3.8

Ca2? Sr2? 1.8 1.6

Ca2? Ba2? 4.0 4.3
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and Ba2? a qualitative agreement between the predicted

and experimental selectivity values has been observed

(Table 2 and Fig. 7). The selectivity values for 2-[1,7,10-

tris(carboxymethyl)-1,4,7,10-tetraazacyclotridecan-4-yl]ace-

tic acid were systematically underestimated which results

in the relatively small R2 (R2 = 0.41) and high RMSE

(RMSE = 1.26) value.

The obtained models for log K have been incorporated

into COmplexation of METals (COMET) software [25]

(Fig. 8) which is freely available at http://infochim.

ustrasbg.fr/cgi-bin/predictor.cgi. It doesn’t need any spe-

cific installation and can be used through any WEB

browser. Any new compound can be submitted as an SDF

(or MOL) file or prepared online. For each metal, COMET

applies an ensemble of MLR models. A combination of

bounding box and fragment control applicability domains

is applied to each individual model in order to decide

whether this can be included in consensus calculations.

Predicted log K can be exported as an EXCEL file which

containing the information for each individual model. The

current version of COMET predicts stability constants

of 1:1 complexes in water of alkaline-earth (Ca2?, Sr2?,

Ba2?, Mg2?), lanthanides (Ce3?, Pr3?, Nd3?, Sm3?, Eu3?,

Gd3?, Tb3?, Dy3?, Ho3?, Er3? , Tm3?, Yb3?, Lu3?) and

transition metals (Ag?).

Table 2 continued

No. Ligand Selectivity, log(KMaL/KMbL)

Ma Mb Exp.a Pred.

10

NN

N N

CH3

OH

O

OH
O

OH

O

Ca2? Mg2? 1.3 3.6

Ca2? Sr2? 1.9 1.6

Ca2? Ba2? 2.9 4.5

11

ON

N
N

N

CH3

O

OO

CH3

Ba2? Mg2? 4.1 4.4

Ba2? Ca2? 2.4 2.4

Ba2? Sr2? 0.6 1.7

12

O
O

N

O
N

N

CH3

O

O

Ba2? Mg2? 7.1 4.4

Ba2? Ca2? 4.4 3.0

Ba2? Sr2? 1.6 1.6

13

O

N

O O

N

O

O

CH3

O

CH3 Ba2? Mg2? 1.7 2.4

Ba2? Ca2? 1.3 0.8

Ba2? Sr2? 0.1 0.8

a The experimental selectivity is calculated using experimental values of the stability constants [13] at 298 K and ionic strength 0.1 M

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

logKexp

logKpred

n = 32 
R2 = 0.88, RMSE = 1.26 

Fig. 6 Predicted versus experimental stability constant values

(log K) for the 1:1 (M:L) complexation for the external test set
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Conclusions

QSPR ensemble modeling of the stability constant log K of

the complexes of Mg2?, Ca2?, Sr2? and Ba2? with diverse

273 (Mg2?), 284 (Ca2?), 147 (Sr2?) and 198 (Ba2?) organic

ligands in water for the M2? ? L = (M2?)L equilibrium at

298 K and an ionic strength 0.1 M has been performed. The

IM were obtained using MLR methods and SMF descriptors.

For each compound, predicted log K is calculated as an

arithmetic average over values calculated by ensemble of

IM. Several new algorithms of variables selection and

models redundancy control have been applied.

Developed models outperform those reported in previ-

ous studies. Thus, root mean squared errors for 5-CV

procedure are 0.75 (Mg2?), 0.77 (Ca2?), 0.72 (Sr2?) and

0.87 (Ba2?) which is comparable with the variation of

experimental log K values measured for the given metal–

ligand complex by different methods. Additional external

validation of the models was performed on the data

recently reported in the literature. Developed models have

been integrated in the COMET predictor available for the

end users via the internet (http://infochim.ustrasbg.fr/cgi-

bin/predictor.cgi).
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